elemeta.nlp.runners package#
Submodules#
elemeta.nlp.runners.metafeature_extractors_runner module#
- class elemeta.nlp.runners.metafeature_extractors_runner.MetafeatureExtractorsRunner(metafeature_extractors: List[AbstractTextMetafeatureExtractor] | None = None, compute_intensive: bool = False)#
Bases:
object
This class used to run multiple MetadataExtractors on a text
- metafeature_extractors#
a list of `MetadataExtractor`s to run, if not supplied will run with all metadata extractors.
- Type:
Optional[List[AbstractTextMetafeatureExtractor]]
- run(text)#
runs all the metadata extractors on the input text
- run_on_dataframe(df, text_column)#
- runs all the metadata extractors on the given text_column in the given dataframe
and return new dataframe with metadata values as columns
Methods
run
(text)run metrics on list of text
run_on_dataframe
(dataframe, text_column)return new dataframe with all metafeature extractors values :param dataframe: dataframe with the text column :type dataframe: DataFrame :param text_column: the name of the text column in the given dataframe :type text_column: str
add_metafeature_extractor
- add_metafeature_extractor(metafeature_extractor: AbstractTextMetafeatureExtractor) None #
- run(text: str) Dict[str, Any] #
run metrics on list of text
- Parameters:
text (str) – the text to run all metrics on
- Returns:
metafeature_value_dict – returns a dictionary of extractor name and the metafeature value
- Return type:
Dict[str, Any]
- run_on_dataframe(dataframe: DataFrame, text_column: str) DataFrame #
return new dataframe with all metafeature extractors values :param dataframe: dataframe with the text column :type dataframe: DataFrame :param text_column: the name of the text column in the given dataframe :type text_column: str
- Returns:
dataframe – dataframe with the values of the metafeature extractors as new columns
- Return type:
DataFrame
elemeta.nlp.runners.pair_metafeature_extractors_runner module#
- class elemeta.nlp.runners.pair_metafeature_extractors_runner.PairMetafeatureExtractorsRunner(input_1_extractors: List[AbstractTextMetafeatureExtractor], input_2_extractors: List[AbstractTextMetafeatureExtractor], input_1_and_2_extractors: List[AbstractTextPairMetafeatureExtractor])#
Bases:
object
Methods
run
(input_1, input_2)run input_1_extractors on input_1, input_2_extractors on input_2 and input_1_and_2_extractors on the pair of input_1 and input_2
- run(input_1: str, input_2: str) PairMetafeatureExtractorsRunnerResult #
run input_1_extractors on input_1, input_2_extractors on input_2 and input_1_and_2_extractors on the pair of input_1 and input_2
- Parameters:
input_1 (str) –
input_2 (str) –
- Returns:
the metafeatures extracted from text
- Return type:
- class elemeta.nlp.runners.pair_metafeature_extractors_runner.PairMetafeatureExtractorsRunnerResult(*, input_1: Dict[str, Any], input_2: Dict[str, Any], input_1_and_2: Dict[str, Any])#
Bases:
BaseModel
- Attributes:
model_computed_fields
Get the computed fields of this model instance.
model_extra
Get extra fields set during validation.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Methods
copy
(*[, include, exclude, update, deep])Returns a copy of the model.
model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
model_dump
(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
model_dump_json
(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(_BaseModel__context)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object contains string data against the Pydantic model.
construct
dict
from_orm
json
parse_file
parse_obj
parse_raw
schema
schema_json
update_forward_refs
validate
- input_1: Dict[str, Any]#
- input_1_and_2: Dict[str, Any]#
- input_2: Dict[str, Any]#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_fields: ClassVar[dict[str, FieldInfo]] = {'input_1': FieldInfo(annotation=Dict[str, Any], required=True), 'input_1_and_2': FieldInfo(annotation=Dict[str, Any], required=True), 'input_2': FieldInfo(annotation=Dict[str, Any], required=True)}#
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.